Wood-Smoke Source Contribution Along the Wasatch Front

Trends, Contribution & Low-Emission Devices

Nancy Daher, Ph.D. Environmental Scientist Utah DAQ

Wood-Smoke: It Takes Your Breath Away!

Framework

Synopsis

- Trends

Analysis Plan

- Source Contributions
- Exceedance Days

Sensitivity Analysis

- Low-Emission Wood-Burning Devices

Synopsis

Temporal Trends

Methodology

Data from Sonoma Tech., Inc.

Measured Parameter	Sampling Method	Sampling Frequency	Sampling duration	
Wind speed/Direction	R. M. Young 5305 V	1-min		
Temperature	R. M. Young 41342 VC	1-min	Aug. 2011-Apr. 2012	
Black Carbon (BC)	Two-wavelength Aethalometer, AE 22	5-min		

Wood-smoke Characterization: Two-wavelength Aethalometer

!! But delta-C is ONLY a QUALITATIVE measurement!!

Delta-C of 0.5 μ g/m³ \longrightarrow 0.5 μ g/m³ of wood-smoke

Delta-C & Temperature/Wind

Delta-C - Diurnal Variation

High Delta-C → High PM2.5?

	Summer	Fall	Winter	Spring
R (PM2.5-deltaC)	-0.01	0.40	0.55	0.34

Summary

Peak delta-C concentrations

Consistent with expected trends for domestic heating emissions

Evidence of Wood-Burning Emissions

Analysis Plan

Source Contributions, Exceedance Days

Going Forward: Wood-Smoke Characterization

Objectives

Quantify wood-smoke contribution

Investigate exceedance days

Compare to other source contributions

Wood-smoke Quantification: PMF Receptor Modeling

- Apportions ~ all major sources
- Uses speciation data
- Higher accuracy if data complemented by levoglucosan

Levoglucosan Vs. Potassium

Levoglucosan = Wood-smoke marker

Wood-smoke Quantification: Methodology

- Hawthorne (speciation site)
- 24-hr PM2.5 FRM + SPECIATION samples
- Jan 2015-Jan 2016

Going Forward: Routine Network Analysis

Going Forward: Routine Network Analysis

Measured Levoglucosan

Emission Ratio: PM2.5/Levoglucosan

PM_{2.5}, wood-smoke

$$PM_{2.5,\text{wood-smoke}} = \underbrace{\frac{PM_{2.5}}{levog}} \times levog._{meas.}$$

From PMF-resolved wood burning profile

To Burn or Not to Burn?

Impact of low-emission devices

Low-Emission Wood-Burning Devices

Hypothetical CHANGE-OUT program:

Existing wood-burning devices replaced by low-emission ones

Low-Emission Wood-Burning Devices

Hypothetical CHANGE-OUT program:

Existing wood-burning devices replaced by low-emission ones

$$E_{pre} = \sum E_i$$

 $E_i = cords \ use_i \times wood \ density \times EF_i \times N_i$

$$E_{post} = cords \ use_i \times wood \ density \times \frac{\varepsilon_i}{\varepsilon_{cert}} \times EF_{cert} \times N_i$$

 $CMAQ = E_{reduction} = E_{pre} - E_{post}$

Wrapping Up

Thank you!

Questions?

